The pipeline output is a JSON structure containing the entitymentions and links for a given article
{
"fileName": STRING,
"language": STRING,
"metadataId": UUID (STRING),
"sentences": [
{
"sentence": STRING,
"sentenceStartIndex": INT,
"sentenceEndIndex": INT,
"entityMentions": [
{
"name": STRING,
"type": STRING,
"label": STRING,
"startIndex": INT,
"endIndex": INT,
"iri": STRING?
}
]
}
]
}
Here we see a file (article) contains a language (detected by the Language Detector), a metadataId (forwarded by pipeline A), as well as a list of sentences, further consisting of a list of entity mentions.
NOTE: The
iri
property can be null
{
"language": "en",
"metadataId": "790261e8-b8ec-4801-9cbd-00263bcc666d",
"sentences": [
{
"sentence": "Barrack Obama was married to Michelle Obama two days ago.",
"sentenceStartIndex": 20,
"sentenceEndIndex": 62,
"entityMentions":
[
{ "name": "Barrack Obama", "type": "Entity", "label": "PERSON", "startIndex": 0, "endIndex": 12, "iri": "knox-kb01.srv.aau.dk/Barack_Obama" },
{ "name": "Michelle Obama", "type": "Entity", "label": "PERSON", "startIndex": 59, "endIndex": 73, "iri": "knox-kb01.srv.aau.dk/Michele_Obama" },
{ "name": "two days ago", "type": "Literal", "label": "DATE", "startIndex": 74, "endIndex": 86, "iri": null }
]
}
]
}
Lastly the JSON output is sent to pipeline C using a POST
request. See the code for implementation details.